Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

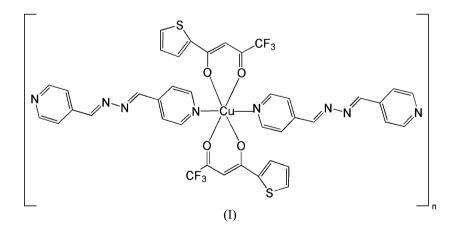
William I. Perkins,^a Tamara Maxwell,^a Andrea M. Goforth,^b Mark D. Smith,^b LeRoy Peterson Jr^a and Hans-Conrad zur Love^b*

^aChemistry Department, Francis Marion University, Florence, South Carolina 29501, USA, and ^bDepartment of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA

Correspondence e-mail: zurloye@sc.edu

Key indicators

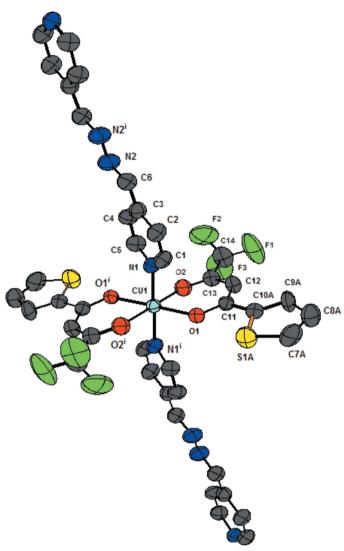
Single-crystal X-ray study T = 294 K Mean σ (C–C) = 0.004 Å Disorder in main residue R factor = 0.036 wR factor = 0.095 Data-to-parameter ratio = 11.8


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[bis(a-thenoyltrifluoroacetonato)copper(II)]-µ-1,4-di-4-pyridyl-2,3-diazabuta-1,3-diene]

In the one-dimensional title polymer, [Cu(C₈H₄F₃O₂S)₂- $(C_{12}H_{10}N_4)]_n$ or $[Cu(L)_2(tta)_2]$ [tta is α -thenovltrifluoroacetonato and L is 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene], Cu^{2+} lies on a center of inversion. It is axially coordinated by two pyridyl N atoms from two different L ligands and equatorially coordinated by four O atoms from two chelating tta ligands. The ligand L propagates the one-dimensional chain structure by serving as a bridging ligand between two Cu octahedra via Cu-N coordinate bonds.

Comment


The synthesis of new coordination polymers has interested chemists and materials scientists because of the potential applications of these materials in a variety of areas, including catalysis, optical applications and gas sorption (Atto et al., 1999; Wang et al., 1995; Chen et al., 1998). Our group has been interested in the synthesis of new N,N'-type organic ligands for the construction of new inorganic-organic coordination polymers. To this end, we have been successful in the synthesis of several Schiff base ligands, such as 1,4-bis(3-pyridyl)-2,3diaza-1,3-butadiene, which have resulted in the generation of many new coordination compounds (Dong et al., 2000; Dong et al., 2000a). The title compound, catena-poly[Cu(L)₂- $(tta)_2$ (tta is α -thenoyltrifluoroacetonato), (I), is a new example of a one-dimensional coordination polymer that uses an N,N'-type Schiff base ligand in its construction.

Compound (I) was prepared by the room-temperature layering reaction of $Cu(tta)_2$ in dichloromethane with the ligand L in ethanol. Emerald-green crystals formed upon diffusion of the two solutions into one another over the course of several weeks, and a suitable single crystal was selected for the structure determination. In (I), Cu²⁺ centers are found in a

© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Received 22 August 2005 Accepted 12 September 2005 Online 21 September 2005

Figure 1

The molecular structure of (I), with the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. Cu atoms are shown in turquoise; O, red; N, blue; F, green; S, yellow; C, black. H atoms have been omitted. Only the major disorder component is shown. [Symmetry code: (i) 1 - x, 1 - y, -z.]

distorted octahedral coordination environment and they are located on sites of crystallographic inversion symmetry. Consequently, each Cu²⁺ center is coordinated by pairs of symmetry-related ligands. A symmetry-related pair of tta ligands occupies the equatorial positions, with each tta ligand coordinated through its O atoms in a bidentate fashion. Two pyridyl N donor atoms, one from each of two different symmetry-related L ligands, complete the octahedral coordination by occupying the axial positions. The average Cu-Obond length is 2.085 Å, the Cu-N bond distance is 2.1062 (19) Å, and the intrachain distance between successive Cu centers is approximately 15.4 Å. The Cu-O and Cu-N distances are typical (Yang et al., 2001; Lingafelter & Braun, 1966), and the Cu...Cu distance provides an estimate of the length of L. The octahedrally coordinated Cu^{2+} centers are linked into one-dimensional chains by L, with each N-atom donor of a single L coordinated to two different Cu centers.

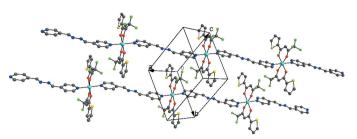


Figure 2 View of the crystal packing in (I). H atoms have been omitted.

The packing arrangement of the one-dimensional chains is shown in Fig. 2, where it can be seen that the chains extend approximately along the body diagonal of the unit cell, in the crystallographic $[1\overline{11}]$ direction.

Experimental

Synthesis of the ligand L was accomplished by minor variation of the published literature procedure, using 4-pyridine carboxaldehyde rather than 3-pyridine carboxaldehyde (Dong *et al.*, 2000*b*). Cu(tta)₂ was prepared in bulk as follows: thenoyltrifluoroacetone (Htta, 10 mmol) and NaOH (10 mmol) were added to ethanol (50 ml) to deprotonate the tta ligand (tta⁻). CuCl₂·2H₂O (5 mmol) was then added to the tta⁻ solution to produce Cu(tta)₂ as a light-green precipitate. The precipitate was harvested by vacuum filtration and washed with cold ethanol for use in the next step. The title compound was obtained by slow diffusion of a solution containing L (0.1 mmol) dissolved in ethanol (8 ml) into a solution of Cu(tta)₂ (0.1 mmol) dissolved in dichloromethane (8 ml). Initially, the two solutions were carefully layered, and emerald-green crystals appeared at the interface of the two solutions after several weeks.

Crystal data

$[Cu(C_8H_4F_3O_2S)_2(C_{12}H_{10}N_4)]$	Z = 1
$M_r = 716.12$	$D_x = 1.603 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 8.6890 (11) Å	Cell parameters from 4033
b = 9.7518 (13) Å	reflections
c = 10.2035 (13) Å	$\theta = 2.3-25.1^{\circ}$
$\alpha = 116.398 \ (2)^{\circ}$	$\mu = 0.96 \text{ mm}^{-1}$
$\beta = 99.417 \ (2)^{\circ}$	T = 294 (2) K
$\gamma = 97.919 \ (2)^{\circ}$	Prism, green
V = 741.99 (17) Å ³	$0.30 \times 0.24 \times 0.20 \text{ mm}$

Data collection

Bruker SMART APEX CCD
diffractometer2577 independent reflections
2495 reflections with $I > 2\sigma(I)$
 ω scans ω scans $R_{int} = 0.027$
 $M_{max} = 25.1^{\circ}$
 $K = -10 \rightarrow 10$
 $T_{min} = 0.658, T_{max} = 0.830$
 $K = -11 \rightarrow 11$
4780 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0508P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.036$	+ 0.2977P]
$wR(F^2) = 0.095$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.07	$(\Delta/\sigma)_{\rm max} < 0.001$
2577 reflections	$\Delta \rho_{\rm max} = 0.31 \ {\rm e} \ {\rm \AA}^{-3}$
218 parameters	$\Delta \rho_{\rm min} = -0.36 \ {\rm e} \ {\rm \AA}^{-3}$
H-atom parameters constrained	

Table 1	
Selected geometric parameters (Å, $^{\circ}$).	

Cu1-O1	1.9759 (15)	Cu1-O2	2.1950 (18)
Cu1-N1	2.1062 (19)	$N2-N2^{i}$	1.404 (4)
O1 ⁱⁱ -Cu1-O1	180	O1-Cu1-O2	88.01 (6)
O1-Cu1-N1	90.97 (7)	N1-Cu1-O2	87.16 (7)
N1 ⁱⁱ -Cu1-N1	180	$O2^{ii}-Cu1-O2$	180

Symmetry codes: (i) -x, -y + 2, -z + 1; (ii) -x + 1, -y + 1, -z.

H atoms were placed in geometrically idealized positions and included as riding atoms with C—H distances fixed at 0.93 Å and $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$. The thiophene ring of the tta ligand is disordered, and the disorder was modeled as a two-component rotational disorder about the *ipso* carbon bond (C10—C11). The two disorder components lie essentially in the same plane. The geometry of the minor component (C7*B*–C10*B*/S1*B*) was restrained to be similar to that of the major component (C7*A*–C10*A*/S1*A*). The pivot atom C10*A*,*B* is common to both components, and atoms less than 0.5 Å from their disorder counterparts were assigned equal displacement parameters. The total occupancy was restrained to sum to unity. The final refined occupancies are A/B = 0.773 (3)/0.227 (3).

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics:

SHELXTL (Sheldrick, 2000); software used to prepare material for publication: *SHELXTL*.

Financial support was provided by the National Science Foundation through grant numbers CHE: 0314164 and CHE: 0315152.

References

Atto, A. T., Al-Dujaili, A. H. & Al-Ani, E. A. (1999). *Acta Polym.* **50**, 313–316. Bruker (1998). *SMART* (Version 5.625), *SAINT-Plus* (Version 6.22) and

- SADABS (Version 2.05). Bruker AXS Inc., Madison, Wisconsin, USA. Chen, X.-F., Liu, S.-H., Duan, C.-Y., Xu, Y.-H., You, X.-Z., Ma, J. & Min, N.-B. (1998). Polyhedron, **17**, 1883–1889.
- Dong, Y.-B., Smith, M. D., Layland, R. C. & zur Loye, H.-C. (2000). Chem. Mater. 12, 1156–1161.
- Dong, Y.-B., Smith, M. D. & zur Loye, H.-C. (2000a). Inorg. Chem. 39, 4927– 4935.
- Dong, Y.-B., Smith, M. D. & zur Loye, H.-C. (2000b). J. Solid State Chem. 155, 143–153.
- Lingafelter, E. C. & Braun, R. L. (1966). J. Am. Chem. Soc. 88, 2951–2956.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.Sheldrick, G. M. (2000). SHELXTL. Version 6.1. Bruker AXS Inc., Madison,
- Wisconsin, USA.
 Wang, K.-Z., Huang, C.-H., Xu, G.-X. & Wang, R.-J. (1995). Polyhedron, 14,
- wang, K.-Z., Huang, C.-H., Xu, G.-X. & wang, K.-J. (1995). *Polynearon*, 14, 3669–3673.
- Yang, R. N., Wang, D. M., Liu, Y. F. & Jin, D. M. (2001). Polyhedron, 20, 585– 590.